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A variational equation is used for deriving a closed system of equations for defin- 
ing the behavior of a viscous compressible multiconstituent fluid [l& The deter- 
mining parameters comprise besides density, entropy, and mass concentration of 
constituents, also the polarization and magnetization vectors of individual consti- 

tuents. In conformity with the method developed in p - 41 the mixture is consid- 
ered to be a single continuous medium so that the presence of various constituents 
results in additional degrees of internal freedom in the definition of the considered 
medium. Chemical reactions between mixture constituents and phase transitions 
are assumed to be absent ( *). 

*) The simulation of a viscous multiconstituent fluid with allowance for diffusion and 
(continued on the next page) 
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1. Boric ar8umptionr and determining parameters of simulation. 
Let us consider the simulation of a medium consisting of N material continua which 
we shall call mixture constituents which fill one and the same volume of a three-dimen- 

sional Euclidean space. We assume that a separate system of coordinates frozen into the 

medium is attached to each mixture constituent. Points in that system of coordinates 
will be denoted by Eip (here and subsequently Greek letter superscripts run through the 

values 1, 2, 3, while Latin subscripts relate marked quantities to particular mixture con- 

stituents and run through the values 0, 1, 2, 3,. . . , N - 1). In the observer’s system 
of coordinates with basis vectors 3)a and covariant components of the metric tensor de- 

noted by g,p the coordinates of a point will be denoted by xa. The law of motion of 
the i -th mixture constituent is defined by functions xz -7 xa (&@, t) , where t is the 

absolute time. We define components of the veiocity vector via and the density oi of 
the i -th constituent by equalities 

qkmst (1.1) 

where g ;a~ are components of the metric tensor in the system of coordinates attached 
to the i-th mixture constituent. Chemical reactions and phase transitions between con- 

stituents are assumed absent, since otherwise it would have been impossible to consider 

parameters of as functions of only the attached coordinates. 

The density p and velocity vectors p 
formulas 

of the mixture as a whole are determined by 
N-l N-1 

P= 2PpiY Va = 2 CiVia (1.2) 
i=o i=o 

where ci = pi / p is the mass concentration of the i-th constituent. 

Below we also use a system of coordinates attached to the mixture as a whole, which 
can be introduced by the differential relationships 

+COnSt 
(1.3) 

where the constants of integration ES are by definition the coordinates attached to the 
mixture as a whole. 

The mass density of the mixture as a whole can now be represented in the form p = 

f Wk^-“2, g^ = det //giiif/ , where gia are merric rensor components related to 
the system of coordinates attached to the mixture as a whole, and f (E@) is a function 
of only the coordinates attached to the latter. 

Taking into consideration the definition (1.2) of the mixture velocity and (1.1). for 
the relationship between the displacement dip of the i-th constituent and dxa of the 
mixture as a whole considered at one and the same point at coordinates za in the Euler- 
ian space at one and the same instant of time t, wt: obtain 

chemical reactions with the use of the basic variational equation was considered in de- 
tail by the authors in “Simulation of continuous media in Newtonian mechanics”, Report 

NII of Mechanics, MGU, N’ 1468, 1973. 
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N-l 

dxa = 2 CidiF 
i=O 

0.4) 

Formula (1.4) and the obvious equality 

d@ = dx” + (vi= - v”) dt 

imply that equality ~iEix (xa, 
r) = dX + V,x (Uia - P) dt 

is valid for the differential of any tensor function with components x (x3, t) determined 

in the observer’s system of coordinates and considered at one and the same point of the 

Eulerian space at one and the same instant of time t . 

In simulating a mixture consisting of N constituents, each of which may be polarized 

and magnetized to various degrees, we define the properties of such processes (which in 

the following are considered reversible) by the three-dimensional vectors of polarization 
Pi* and magnetization Mi* related to a unit volume of the i-th constituent. These 
vectors are introduced in their own inertial system of coordinates related to the i-th 

constituent with contravariant components Pi*a and Mi*a (here and subsequently the 

term “own inertial system of coordinates” is understood in the meaning given to it in 

Cl]). Vectors and tensors (as well as their components) are denoted in this system by 
asterisks. We further assume that one of the mixture constituents may carry a free elec- 

tric charge of density psO and that conduction currents defined by the volume density 
vector of the electric conduction current i, may flow in that constituent. Note that the 
continuity equation which in the observer’s system of coordinates is of the form 

ape0 
at + vu (V + Peoe = 0 (1.5) 

where V, is the operator of covariant differentiation in the observer’s system of coordi- 

nates (it is assumed that in what follows summation is carried out with respect to con- 
current upper and lower Greek letter sub-indices). In accordance with our assumptions, 

We set f&k7 ik = 0 (k # 0) for the remaining components. We assume that velocities 
of the mixture as a whole and of its individual constituents are reasonably low in com- 

parison with the speed of light in vacuum, hence terms of the order of u / c and Vi ‘1 C 

are neglected. 

The electric intensity vector E and the magnetic induction vector B in the obser- 
ver’s system of coordinates with covariant components Ea and Ba , respectively, are 
taken as the characteristics of the electromagnetic field in the mixture as a whole. We 

also use the covariant components of vectors Pi* and &Ii* determined in the obser- 
ver’s system of coordinates and denoted by Pi” and Mi” . These components are rela- 
ted to the covariant components Pi*a and Mi*a by the usual formulas for vectorcom- 
ponent transformation by virtue of the assumption of smallness of terms of the order of 

vi I c. 
Using the vector and scalar potentials of the electromagnetic field in the medium, 

we obtain for the components of vectors Ea and Ba the equalities 

(1.6) 

where ESPY are contravariant components of the Levi-Civita tensor which is antisym- 
metric for all indices. It follows from (1.6) that vectors E and B satisfy the second 
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pair of Maxwell’s equations which have to be added to the derived below system of equa- 
tions 

1 aBa E”W,E, = - T at, V,Ba = 0 (1.7) 

2, The verfotfonrl equation, Let us introduce variations of functions 

Ica (Er9 0~ Aa (E’“t t), Cp (E’Y t), S (E’T t), Eia (Ep, t) 

which we denote by 69, 6A,, 6cp, 6s and 8gia (6 d enotes variations of quantities 
which are functions of coordinates attached to the mixture as a whole and of time). 

For any function 9 (gp, t) the following definition of variation is justified : 

w (E’“? t) = 9’ (E’“, t> - 111 (EP, t) (2.1) 

where the prime denotes the value of the varied function. Let us determine the variation 
of functions related to tke system of coordinates attached to the i-th constituent P (Et’“, 

t), &a (EP’, t) and Mi” (E ip, t) by the equalities 

6iXa = Xa’ (Eipy t) - Xa (hp, t) (2. a 

6iPiA” = Pi OL’ (bp, t) - Pi-” (&P, t) 

Definitions of the differently defined variations of coordinates (see formulas (2.1) and 

(2.2) ) imply the following dependence between these : 

while variations 6gia are bound by the relationships 
N-I 

2 c&p = 0 

i=o 

With the use of these variations of the above functions it is not difficult to derivevari- 
ations of functions Ea (Ep, t) and &?a (Et”, t) (with allowance for relationships (1.6)) 

and, also, variations of densities pi (Ej*, t), of concentration ci (El*, t) and of com- 
ponents of velocity vectors ~a (EP, t) and uia (EJ, t). 

As the basis for the simulation of a mixture consisting of N constituents, we take a 

variational equation of the form 

8J hdz,+6W”+6W=O, A = ht f ha (2.3) 
v, 

where A is the combined Lagrangian of the electromagnetic field and medium, 6W* 
is some specified functional whose method of selection and form are defined below, 
6W is a functional determined by the specified A and 6W* along the three-dimen- 
sional boundary Zsof an arbitrary four-dimensional volume V,. We define the Lagran- 
gian A, of the electromagnetic field in the medium by the expression 

N-l N-l 

Al = & (EarEDgap - BaB@gap) + E” z ~i%hfi + B” 2 MiPgap 
i=O 

i=. 

The Lagrangian -12 of the medium is assumed to be equal p (K - u), where u is 
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the internal energy of a unit mass of the medium and K is the kinetic energy of such 

unit mass, equal to the sum of kinetic energies of macroscopic motions of individual 

constituents N--l C.V.2 
K:zxy 

,i=O 

The selected definition of kinetic energy - which shows its additivity - is in many 

instances either insufficient or can be simplified (e, g_ in many instances it is possible 

to take 8 i 2 as the kinetic energy of a unit of mass). The results presented here can 
be readily extended to cases of any arbitrary dependence of the Lagrangian A, on rela- 

ted arguments (thus, for example, small-scale motions of individual constituents can be 

taken into account). Note that the definition of kinetic energy used here yields the most 

rational form of equations for the momenta of individual constituents, 
In what follows we assume that the density of internal energy of the mixture considered 

as a whole is a function of densities pi of individual constituents, of entropy 5’, and of 
contravariant components of polarization 3t i (1 and magnetization mia per unit of mass 

of the i-th constituent. (Components of vectors nia and TP+ia are related to components 
of vectors Pi” and Mi4 by equalities Pi” = pini’ ‘and Mi” = Qimia ,respec- 

tively). In addition to the arguments indicated above, the function of internal energy 

density of the medium depends on com~nents of the metric tensor gsp in the observer’s 
system of coordinates and on certain constants Kg which define physical properties of 

the mixture (instead of pi parameters ci and p may be taken as the arguments for inter- 

nal energy). 
The form of dependence of the function of internal energy on the indicated set ofargu- 

ments is not fixed here. It can be selected in a quadratic form of the polarization and 

magnetization vector components which may be expressed in terms of total (for the mix- 

ture as a whole) polarization and magnetization vectors only. The coefficients of such 
forms can be functions of constituent densities (or of the density of the mixture as a whole 

and of concentration ci). As indicated previously, the entropy &’ calculated per unit of 

mass of the mixture as a whole appears as one of the parameters defining the internal 

energy density. The part of that entropy apportioned to the i-th constituent is not con- 

sidered as a parameter in our simulation. This is because in it we are exclusively con- 
cerned with temperature T and consider that at one and the same point of space and 

at the same instant of time the temperature Ti of individual constituents is equal to the 
temperature of the mixture as a whole. 

We bear in mind the reversibility of the polarization and magnetization processes, but 
assume that mixture constituents may possess viscosity properties. Assuming that the 
energy exchange between the electromagnetic field and the mixture is determined by 
the release of Joule heat in the mixture and by the polarization and magnetization pro- 
cesses, we can express the second law of thermodynamics for the mixture as a whole in 

the form N-I iv-_1 

pTdS = 2 ~~a~~~~i~~~ - 2 G+,Jiadt + EaiOadt + dQ, (2.4) 
i==o &SO 

Ji” = pi (USE - 7~“) 

where the first term in the right-hand part represents the work of viscosity stressesalong 
displacement gradient of constituents, while the second term represents the work of 
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generalized internal mass forces Gi along the relative displacements of constituents, 
which (together with generalized forces ~~a:‘) determine the irreversibility of processes 
taking place in the medium. Jiu denote components of the constituent diffusion vet 
tors and dq, 1 p-‘dQ,, is the input of external heat energy to a unit of mass (of mix- 

ture) as a whole, which is unrelated to energy transfer by diffusion and to the action of 
the electromagnetic field on the medium. 

In the region of continuous motion we include in the functional 6W* the following: 

1) virtual work &4(?) of volume forces with components Fi, , external relative 

to the system medium-electromagnetic field, along virtual displacements oilca of mix- 

ture constituents ; 
2) possible input of external energy to the medium (unrelated to the addition of 

energy owing to diffusion processes and to the release of Joule heat), because of the as- 
sumption that the second law of thermodynamics (2.4) is satisfied for virtual displace- 
ments and possible variation of the medium properties ; 

3) terms which define the increase of uncompensated heat dQ’ owing to dissipa- 

tive effects related to the release of Joule heat. 
Taking the above into consideration, we specify the functional by the following for- 

mula : N-1 W-1 

‘W* = S (pTGS - ~ Zia'VPGiP - ~ (Fi3 + PiGi,) 6rli” -i- (2.5) 

v, i=o i-0 

N-1 

2 Fia6xa + % ~D~(~OLA~-P~O~~L(I') dr, 
i=O 

where the terms defined above are of the form obtained by transformation by formulas 
(2.2) and 6,LAa and 6sL(p denote absolute variations of the vector and scalar potenti- 
als for which relationships 

tjoLAa = 6A, - V,AJhQ + A,Vdozp 

are valid. With the substitution of actual increments for variations the absolute incre- 
ments of vector components acquire the meaning of vector component increments ofthe 

related system of coordinates attached to the zero mixture constituent, and joa are com- 
ponents of the total current of the latter constituent in the observer’s system of coordi- 

nates. These components are related to the conduction current and the free charge ofthe 

zero constituent by equalities 
ill” = io= + peouoa 

3. The ryctem of equation, which definer the mixture rimulr- 
tion. With allowance for the above assumptions about the form of density functions 
of the internal energy u of the mixture as a whole and about the density of the mixture 
kinetic energy K, as well as about the form of functional 6W* owing to the assumed 
arbitrariness of some of the systems of variations, it is possible to derive from the variational 
equation (2.3) closed systems of equations for determining the simulation of a mixture 
consisting of N constituents, each of which may be polarized and magnetized to various 
degrees. As one of possible systems of independent variations we select variations whose 
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arbitrariness we assume to be 

6A,, 6q, 6iti, 6S, SiXi”ay GimiAa (3.1) 

This choice of the system of independent variations and the condition that the volume 
integral of the variational equation is zero, yields the following system of Euler’s equa- 

tions : 

(3.2) 

which represents the first pair of Maxwell’s equations defined in the observer’s system of 
coordinates, and where Da and H, are determined by the equalities 

N-l N-l 

Da= Eat_4n 2 Pia, H,=B,-44n 2 Mi, 
i=0 i=O 

N-l 

piaicr = Vppd -!- Fi, + FM;& -!- Pi 2 Ri, - P&, -I- P& (3.3) 

which are the equations of momenta for the i-th constituent of the mixture. We denote 

by Ui, the covariant vector components of acceleration of the i -th constituent of the 

mixture, which are related to velocity vector components of that constituent by equali- 
ties avia + Vi~VyV~a ai, = at 

Tensor components piaa and Ri, are determined by formulas 

The specific form of expressions for components piaP and R,, depends on the choice 

of arguments of the internal energy of the mixture as a whole and of the set of indepen- 

dent variables. Separation of the total force acting on the i-th constituent into volume 
and surface components generally requires additional assumptions. We denote by P&Ii= 

the covariant components of the vector of the three-dimensional volume ponderomotive 
force (which conforms to the Minkowski hypothesis about the form of the four-dimension- 
al tensor of energy-momentum of an electromagnetic field in a medium). For FM<~ we 
have the following expressions : 

F&liu. = PeiEa + $~,~sji’B~ + (3.4) 

t (PiYVaEy - EyV,Pi’ f MiYV,By - B,V,MiY) 

The equations of state, which represent the definition of temperature, are 

T = Bl_JIdS (3.5) 

The relationship between vectors of electric field intensity and those of magnetic 
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induction in a medium is determined by the equation of state which in terms of projec- 
tions on coordinates of the observer’s system are of the form 

ciEa = s , au 
CiBa = - 

1 ami4 
(3.6) 

From the variational equation (2.3) we obtain, besides Euler’s equations, expressions 
for the functional 6w which may be represented in the form 

N-l 

where aLA CL and 6~(p denote absolute variations of vector and scalar components of 
the electromagnetic field in the medium relative to the system of coordinates attached 
to the mixture as a whole and associated with ordinary variations (in the observer’s sys- 

tem of coordinates) by formulas 

while for the remaining tensor quantities in the formula for the functional 6W we have 

expressions 
P&P = pia@ - piui,z$ 

Pia = -PiVia 

&P e - -&- (E,D’ + N, BP) + & (EJF + Hy BY) 6,@ 

5,4 = & wy@BY 

where in conformity with the Minkowski hypothesis s, fi denotes of the spatial part of 

the energy-momentum tensor of the electromagnetic field in the medium and Sa4 de- 
notes momentum density components of the electromagnetic field in the medium (the 

Mi~owski hypothesis about the form of the fog-dimensional ener~-momentum tensor 
of the electromagnetic field in a medium). N, and N* are components of the vector 

of the four-dimensional normal to the three-dimensional surface x s which bounds vo- 

lume V,. 

4. The equation of energy for a mixture conrfdered a8 8 rfnglci 
medium, As a corollary of the variational equation (2.3) and expressions for the func- 

tionals 6W* and 6W, from formulas (2.5) and f3. ‘7). respectively, we obtain the 
equation of energy of the medium, which may be presented in the form 
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N-l 

2 (Fi, + F_~ia + piGi=) (Va - VP) + 
i=O 

where the following notation is used : 

i=o 

Operator di / dt is a derivative with respect to time determined in the system of coor- 
dinates attached to the i-th mixture constituent. 

With the use of the second law of thermodynamics (2.4) it is possible to represent the 
energy equation (4.1) in the form 

Pa (u i- Nil’ci $) = Vp (p&P) dt + (FM= + Ni’ F,,) p at + (4.2) 
i=o i=o 

$- 62)JP]at ++Ni;E,Pr + B,M:) V&R at + 
i==o 

N-l 

2 (Fia + F&Id (vi” - ~9 at + 
i=a 

N-1 N-l 

E, 2 diPi” + B, 2 d&ia + dQo f joaE, dt 
i=o i=O 

The left-hand part of this equation defines the change of total energy of the mixture 
considered as a single medium. The first, second, and third terms in the right-hand part 
of Eq. (4.2) represent the elementary work of surface (mechanical), and volume mechan- 
ical and ponderomotive forces, respectively, over elementary displacements of the me- 

dium as a whole. The fourth term represents the surface input of energy caused by dif- 
fusion processes (in particular it may contain the work of surface forces over relative 
displacements of constituents), 
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represents the elementary work of electromagnetic pressure over deformations of mix-, 
ture constituents, the expression 

N-l 

2 (Fi, + FM~,) (UP - v”) dt 
i=o 

represents the elementary work of volume and ponderomotive forces over relative dis- 
placements of constituents, and the terms E,diPia and B,diMia are related to the 

elementary input of energy by the electromagnetic field to a unit of volume of the me- 
dium, caused by polarization and magnetization effects, while the last term represents 

the Joule heat released in a unit of volume of the medium during time dt. 
In accordance with formula (2.4) the second law of thermodynamics can be represen- 

ted in the form 
pT dS = dQ!‘“’ $- dQ’ 

N--l 

,jQ’ = &JVpa dt + 2 T~~Q’,~, (uia - v,) dt - 
i=o 

N-1 N-l 

2 Gi,JFdt 
i=O 

(~~8 = z. ail’) 

where dQ’ is the increment of uncompensated heat and dQ(e) is the input of heat, 

external to the medium as a whole, to a particle of the mixture and unrelated diffusion 

energy transfer. Assuming that the external heat input reaching the medium is due only 
to heat conduction and the release of Joule heat, we can write the expression for entropy 

increase caused by internal processes in the mixture in the form 
N-l 

pd$=+ 
N-1 

2 Tia’VpUia dt - 4 q’V,T dt - -& 2 GiaJi” dt + E,i”, dt 
i=O i=o 

where 4” denotes components of the heat flux vector, and allowance is made for the re- 
versibility of the polarization and magnetization processes. The inequality 

must be satisfied for all processes. 

diS > 0 (4.3) 

Note that the thermodynamic forces rqa / T, qa / TZ and GiG / T may be expressed 
in terms of thermodynamic fluxes VP via, Jia, Va T and possibly, other determing para- 

metrs. Homogeneous first power functions may be chosen for thermodynamic flux func- 
tions, which (in the case of symmetry of coefficents in these relationships) corresponds 
to Onsager formulas. In such cases inequality (4.3) must be identically satisfied. This 

imposes certain limitations on the selection of phenomenological coefficients. 

6, On the rqurtiona of momenta for a mixture &I in ring16 me- 
d i urn. As the second possible system of independent variations we can take the fc~llOWi% : - 

SX~, 6A,, 6~, 6qiay 6S, 8iZifiay GimiALz which differ from the system ofvariations(3.1) 

in that instead ofvariations sixa, whose coefficients in the volume integral are equations of 
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individual constituent momenta,variati~ns &a and fir(i’ are considered to be arbitrary, 
and among the 6q ip there are 3fN - 1) independent ones. With this choice of the system of 

independent variables all Euler’s equations (3.2) - (3.6) are valid, except Eq. (3.3) for 

which three equations of momenta of the mixture taken as a single medium and the 

3(N - 1) linearly independent equations obtained on the assumption of arbitrariness 

of variations 6qia , must be substituted. Thus, instead of Eqs, (3.3) of momenta for in- 

dividual constituents, we have equations of momenta for the mixture as a single medium 
N-l N--1 

Pax = vpp2 - 2 VP @‘i&? + 2 Ficz + FaIa 
i=ij i=o 

(5.1) 

where a, denotes covariant components of the acceleration vector of the mixture as a 
single medium, which are related to components of the medium velocity vector by the 

equality a, = f3v, i dt + ~~V~u~ ; pa@ denotes mixed components of stress tensors 
in the mixture which are compated in the observer’s system of coordinates but have the 

physical meaning of stress tensor components only in the system of coordinates of the 

mixture as a whole, and F, denote according to Minkowski the covariant vector com- 
ponents of the volume ponderomotive force exerted by the electromagnetic field on the 
mixture as a whole. For the stress tensor components pa@ and the volume ponderomo- 

tive force we have the expressions 

N-l N-l 

-&Et E,PC + B,M,y)Q - x (E=PIp + B=~~) + r,@ 
1=D i=o 

FM, = peo& + + W!iBY + & (DYV,E, - E,V,DY + BY&H,. - H&BY) 

where D, and H, in the last equality are defined by the related equalities in Sect. 3. 
We point out that the expression for tensor components pa@ are of the form obtained 
above when p and ci are taken as the arguments of the internal energy density function 

(instead of pi, as was done in Sect. 3). 
A comparison of equalities (3.3) and (5.1) with allowance for expressions for Pia@, 

pap , and volume ponderomotive forces show that equations of momenta for the mixture 
taken as a single medium can be obtained from Eqs. (5.1) of momenta for individual 
constituents by simply summating the latter, taking inro account the different method 

of chasing internal energy arguments. 

The authors thank L. I.Sedov for suggesting this subject. 
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The character of the loss of stability in a magnetized nonequilibrium plasma ina 
bounded region is examined. The influence of thermal conductivity and nonlinear 

effects are taken into account. It is shown that both magnetically soft and mag- 

netically hard modes of the loss of stability can take place, With small parameter 

values of the supercritical state the rise of self-oscillations is possible. The criti- 

cal value of the Hall parameter corresponding to the beginning of ionization insta- 

bility [ 1, 21 and its dependence on the boundaries, were examined using the linear 

approximation in [3- 51. The spectrum for the linear problem was examined neg- 
lecting thermal conductivity [S] and taking it into account [5]. It was established 
that the critical value of the Hall parameter is identical in the presence of bound- 
aries and in the case of an infinite medium. Numerical computations of the ion- 

ization instability process are given in [6, 7). The bibliography of early workson 
ionization instability can be found in the review [8]. 

1. Let us consider the behavior of a nonequilibrium magnetized plasma in a bounded 

region. An infinite channel extends in the direction of the y and z axes and it is bound- 

ed in the direction of the 2 axis by nonconducting walls, separated by a distance b. A 
constant magnetic field B is directed along the z axis. It is assumed that ionization 
equilibrium exists anf the effect of the induced magnetic field is neglected. If the elec- 

tron temperature T considerably exceeds the heavy particle temperature T,, then the 
state of the plasma is defined by the following system of equations: 

rot E = 0, divj = 0 (1.1) 

u=-;, j+jxQ=a(n,T)E, q$-qxQ= -h(n, T)C7 

Here I is the ionization potential, U is the directional electron velocity, o and ?L 

are the coefficients of electric and thermal conductivity, respectively, i is the electric 
current density, v is the frequency of collisions between the electrons and heavy parti- 
cles, 6 is the portion of energy transferred at the collision with a heavy particle, E is 
the electric field strength, Q = o / v (n, T) is the Hall parameter, o is the electron 
cyclotron frequency. 


